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SUMMARY

This research addresses the problem of determining the existence

of a representative group/crew learning curve (or set of curves) and the

development of a mathematical description of this c.irve applicable to

training levels in operational testing. Emphasis is placed on the

analysis of data from actual operational test reports.

An iterative procedure is developed to analyze sample data using

regression techniques to screen data for suitability and to fit nonlinear

learning models.

A representative learning curve for the data analyzed is selected

by comparing the sum of squares regression and the lack of fit ratio J
for each model.

This comparison shows that the following models appeared to

provide an adequate fit to the data analyzed.*

(1) Y atb

-bb

(3) Y atb + C

(4) YK aeb

Since the variations of the power function, models (2) and (3) did not

appear to provide a better fit to the data, model (1) was preferred

from thn.' standpoint of parsimony. It cannot be stated conclusively

that model (1) provides a statistically better fit to the data than

model (4). However, based on a survey of industrial applications of

the power function model as rejirted in the literature, it was concluded4



ix

that the model Y = atb does adequately fit the empirical data analyzed

and can be used as a rep;ýesentative group/crew learning model for this

data.

4
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CHAPTER I

INTRODUCT ION

Bac kground

The initial direction for this study was provided in a research

task statement b' the U.S. Army Operational Test and Evaluation Agency

(OTEA).

Conduct background research, including literature search
covering both government publications and the general
literature and field visits as appropriate to identify a
general cise learning curve (or set of curves, if r.ecessary)
existing in current test data; to describe this curve (er
curves) mathematically in a manner such that the slope
(first derivative) can be derived; to present evidence in
support of the validity of such curves; and, to prepare a set
of instructions explaining how to design a test to generate
the needed data and then treat the data to record the curves.

OTEA is continually required to assess the impact of the training

level of a crew or unit engaged in operational tests. This assessment

is of particular importance because OTEA has the mission of assisting

in the planning, directing, and evaluation of operational testing required

during the materiel requisition process of all major systems and selec-

ted non major systei.+ Adequate and thorough operational testing is

essential in determining an item or system's operational suitability and

logistic support requirements (1,2).

Operational Testing (OT) is conducted in the most realistic test

environment possible and utilizes the most representative configuration

of the future operational system. Because operational testing is

conducted throughout the development life cycle of materiel, it is

I _________ ________
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usually begun using early prototypes and continues through the cycle

by using production models.

To enhance the validity of generated test data, operational

testling must be conducted by troop units, support personnel, and indivi-

duals who will actually be issued the materiel for use.

Through these tests a comparison is maide between new materiel and

existing equipment being operated under the same or similar mission

profile. This testing concept greatly assists decision makers to

accurately assess total operational suitability from a doctrinal, organi-

zational and tactical viewpoint, and to collect performance and reliabil-

ity, availability, and maintainability data that closely simulates

that which would be experienced after the materiel is issued to the field.

Results of testing are forwarded through channels to the Army Systems

Acquisition Review Council (ASARC), with final decision of acceptance

or rejection resting with the Secretary of Defense (3,4,5).

Essentially, the assessment of crew or unit training levels has

traditionally been limited to qualitative techniques such as adminis-

tering a proposed training program (with the assumption that the completed

training equals a given training level) relying on ARMY TRAINING AND

EVALUATION PROGRAM (ARTEP) results, or using military judgement.

Training data is currently overwhelmingly qualitative, where as

quantitative data is much to be preferred in operational test and

evaluation.

It is generally agreed that a performance curve describing the

progress of trainingj is an asymptotic "learning curve". Assuming this,

it should be possible to use the slope of a curve as a measure of how
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closely a unit has approached the asymptote. The slope of a curve may

be expressed mathematically and can be treated rigorously. However,

even though it is generally accepted that the individual "learning curve"

follows this assumption and appears to be robust, it cannot be assumed

that a representative "learning curve" for a crew or unit has these

same properties.

Objective, Procedure, and Scope

Since operational testing usually involves the comparison of

baseline systems to newly developed systems, participants are initially

determined to be qualified or trained on the baseline system. Prior to

the actual conduct of the test, refresher training and/or contractor

training is provided on the new system. Through the use of randomiza-)

tion and test design the effect of learning during the test is generally

expected to be lessened.

The objective of this study is to determine the existence of a

representative learning curve (or set of cuy'ves) and develop a mathema-

tical description of this curve applicable to training levels in opera-

tional testing.

This research involves an "after the fact" analysis of data from

various test reports. Empirical data was collected, primarily from

OTEA test reports and data made available through othev, training and

analysis agencies. A more detailed description of the various data

collected is provided in Chapter IV. The data obtained was plotted

using consecutive trials versus a specified performance measure/measure

of effectiveness (MOE) in order to determine if there were patterns
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which might suggest a demonstrable group "learning curve".

Linear regression models are u~sed to screen sample data for

suitability and further analysis, while nonlinear regression models are

used to fit learning models to the sample data. Additionally, the fitted -

learning models will be tested for adequacy through a direct examination

of residuals.

The scope of this research is concentrated on the analysis of

data obtained from a military operational testing environment in whichA
OTEA operates. A survey of the general literature is conducted to

determine the existence of appropriate industrial studies of group or

team learning which might support this study.

The initial background search involves the theory of learning

along with the use and development of learning curves. This particular

aspect is expanded to include group or team performance (learning

models discussed in Chapter II).

The remainder of the study involves development of the methodology

employed, a description of data collected, and a discussion of results

including appropriate recommendations and conclusions. -

- - - - - - -
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CHAPTER II

REVIEW OF APPLICABLE LEARNING THEORY RESULTS

This chapter contains a review of general learning thecry and the

development of learning progress or performance improvement. It further

summarizes the application of learn~ing theory concepts to group/team

learning.

Learning Theory

Learning is a fundamental process of life. Every individual

learns and through learning develops modes of' behavior by which he lives.

Learning ira.y occur intentionally, through organized or unorganized

activity, and the variables which influence learning may be grouped under

-the three headings: (1I) individual variables, such as capacity ar~d

motivation; (2) task variables, such as meaningfulness and difficulty;

and (3) environmental variables, such as practice and knowledge of

results (6)j.

The learning phenomenon has been studied by philosophers and

psychologists for centuries, in fact Aristotle was the first to set

forth laws in an attempt to explain the basis of learning (7). ~.

In Mednick's book (7,B), learning has been defined in terms of

four characteristics. These are:

1. Learnii:g results in a behavioral change. This characteristic
is the basic goal of any efforts at learning.

2. Learning is a result of practice. This eliminates
behavioral changes due to illness, maturation, or motivation.
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Although performance may be greatly altered by these
variables, learning is not.

3. Learning is a relatively permanent change. A task which
was learned sometime in the past can be easily resumedi
after a little practice.

4. Learning is not directly observable. Performance is -

affected by variables other than learning. Therefore,
a record of successive pe-rformance is just that, and
cannot be considered an exact representation of the
learning process.

Mathematical Models

In order to measure learning or com~pute the rate of learning,

mathematical models were developed. Experiments in learning phenomena

are generally concerned with changes in some evidence of learning as a

result of experiences on discrete trials. In most paired-associate

learning paradigms (models) the subject's knowledge is tested after

every exposure to the correct pairing (9). When a number (whether it

be a probability value between 0 and 1, or some integer value) changes

as a result of discrete opportunities, we ar-ý more likely to find more

accurate mathematical analogies in difference equations than in differen-

tial equations. But difference equations were not known to psychologists

until the late 1940's and early 1950's.

Clark L. Hull (10) is sometimes considered the first mathematical

learning theorist, although there are other, earlier, quantitatively

oriented theorists (9). The genesis of Hull's model was different from

that of current models, and the difference is a critical one. The

major mathematical technique used by Hull and his contemporaries was *
curve fitting. For Hull this meant a somewhat arbitrary selection of

one from the many equations whose form would be compatible with
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previously obtained data. Theory dictated the selection of variables

for his equations, but the precise forms of the equations were derived

primarily out of attempts to fit past data. W1ith the new quantitative

techniques, that have become available, it is now possible to permit

the theory to imply the equation form directly, prior to data collection.

The capacity to derive equations from theory, and to see how thsse

theoretically derived equations conform to data patterns, is what is

meant by a true analogy between theory building in psychology and theory

building in the physical sciences.

A further change from the past in learning theory that appears

to be fairly general in more recent theory building is the abandonment

of the belief in a general learning function that should cover all

learning situations. More recent thinking recognizes that different

theories, and therfore different mathematical functions, might be

required for different learning situations. The earlier work assumed

that a finding in one laboratory, stemming from one experimental

paradigm, could contradict the theory of another experimenter using

a different paradigm, with all assumed to be exploring a similar process.

Learning Curves

When several trials are given in an experiment and measures of

learning or of retention are obtained, these measures may be plotted

in the graphic form known as a learning curve, a graph which affords

a comparison of the performance on each trial with a performance on other

trials (6). It is customary to plot the independent variable on the

horizontal axis, the abscissa, and the dependenL- variable on the
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vertical axis, the ordinate. The dependent variable changes as a result

of the experimenter's manipulations. Scores on the dependent variable

are dependent upon or are the function of the experimental factor and

are usually some form of a learning score error made, time consumed, J

and so on.

One of the things a learning curve reveals is the rate of improve-

ment and the changes in this rate. A uniform rate of improvement is

indicated by graphs of the type shown in Figure 2-1.

A B

U, U,

Trials Trials -J

FlMure 2-1. Theoretical 1 !ar.ii, curves shjaini zero
accoelration. or a u;if)ri rate of itDrový-
ment. In .1 i,,'iprovemont is sho-.m by an
increase in scores. 3 depicts those
learning situations wherein decreasing
scores indicate improvement, such as
fewer errors. (6)

Here progress is indicated by a straight line. Such a graph

means that the increment of gain is the same for each successive trial.

When the rate of improvment is constant, we have what is known as
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zero acceleration.

Most curves of learning show variations in the rate of improvement.

Curves for motor learning usually show the fastest rate of gain at

the beginning and a slowing up as practice continues. Such a change is i

called negative acceleration.

The authors, Garry and Kingsley, state that this should not be

confused with a loss of skill. It refers to those cases wherein improve- j
ment is still being made, but the increment of gain is smaller on each

successive trial. ,Theoretical curves for negative acceleration are .

presented in Figure 2-2.

A 3
61I

L°,
Cu

U

Trials Trials

Figure 2-2. Theoretical curves of
negative accel eratlon
showing a decrease in
the rate of gain (6)

In the cases in which the scores grow sanaller (time scores or

error scores on auccc3slv_ trials) as perfarnricc improv-s, nogativz

accloaratio;n is i:Iliicated by a downw•rd concave curve. 4,egatilly
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accelerated curves are most frequently obtained in situations where

(1) the learning task is relatively simple,

(2) the subjects are of average or above ability (either
practiced or bright),

(3) there is pusitive transfer from previous learning, or

(4) the tests are given toward the end of a series of trials.

Sometimes there is very slow progress at the start, with an

increase in the increments of improvement as practice is continued.

This increase in the rate of improvement is called positive acceleration,

see Figure 2-3.

A '3

1. L

Li

Tri als Trials

Figure 2-3. Two theoretical curves of positive
acceleration. In both, the rate of
improvernent is faster in the second
half of the 'earning p.riod than in
the first part (5)

Curves of positive acceleration are frequently fou:J in motor

learning or where previous learning interferes with the nei learning.

It is clear that positive acceleration "annot continue indefinitely,

- _ _ __. ---- '--



for sooner or later the learner reaches complete mastery or the curve

levels off as he approaches the limit of his ability to improve (6).

It is likely that if we were able to plot a complete learning

curve from zero to the absolute limit of improvement for any single

performance, we should find the S-shaped curve with relatively slow

progress at first followed by increasing increments of gain and leveling

off with decreising gains as the limit was approached (6).

It may be presumed that a very rapid initial rise in a learning

curve is due to the fact that the learning task 1: not altogether new

to the learner and that he therefore does not begin at a 'zero point.

The slowing down of the rate of improvement may be caused by

several factors such as reaching the limit of improvement, fatigue,

loss of interest, a sense of sufficiency, lack of desire for further

advancement, and the needless repetition or overlearning of parts of

the performance mastered in the early steps of learning.

The absolute limit of performance is rarely reached. In most

instances, practical limits and motivational limits are the determinant

factors.

Burns (7) reports that the first publication leading to the

industrial application of the learning curve has been credited to T.P.

Wright. Wright (11) showed that as the numter of aircraft produced

increases, the cumulative average per unit cost to procuce an aircraft

c
decreases at a constant rate. The model empluyed was Y KXc, where

Y - the number of direct labor man hours required
to produce the Xth unitI

K = the number of direct labor man hours required
to produce the first unit

- --- .-- __________- - -.-----
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X *the unit number'

c B where B equals the learning curve factor,
og a constant (.90, .85, .77, etc.)

The mathematical function is called an inverse variation and means that

the dependent variable (Y) gets smaller as the independent variable (X)

gets larger. This relationship is also-referred to as an exponential

(log-linear) equation. For a given learning curve, K and c are constants

where K can assume any positive value and c is a constant between

zero and minus one (12,13).

This has since become known as the cumulative average theory of

the learning curve (14). Since this first publication, learning curve

theory has been extended into many areas ranging from the setting of

contract prices to production planning and control (15). In situations

where the learning curve principles can be applied, the government is

also using it in evaluating contract proposals.

In a related article (16), J.D. Patton states that the manufactur-

Ing progress curve is often referred to as a learning curve. He asserts

that Improvements usually come from tool design, methods, m~aterials,

procedures, as well as the employee's learning. This concept is also

useful in the areas of training, maintenance, and other logistics

concerns Ile further states that the manufacturing progress function

is assumed to describe a constant percentage improvement as the produc-

tion quantities double and that all progress functions will have the

same shape, even, though they may differ in the percentage improvementsI

betwe(In doubled production quantities and the direct labor hours

required to complete the first unit. This progress learning curve
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utilizes the power function, Y = KXc developed by Wright (11).

An alternative model, Y , axl i 0.as pr-sented by Pegels (17).

He states that:

The startup or learning curve literature has in the post
concentrated mainly on the algebraic pow;", function or on
versions based on this function. This concentration is not
unusual because the power function has proven, in numerous
studies, to fit empirical data quite well. However, other
easy-to-apply algebraic functions should also be analyzed
and considered. One such function, an exponential function,
is shown to provide a better fit to several sets of empirical
data than the traditional power function.

The other alternative models to which Pegels refers were usually

intended for specific applications or contained resteictive assumptions.

He specifically mentioned: (1) An S-type function proposed by Carr (18)

which was based on the assumption of a gradual startup. An S-type

function has the shape of the cumulative normal distribution function

for the startup curve and the shape of an operating characteristics

function for the learning curve, (2) Guibert (19) proposed a complicated

multiparameter function with several restrictive assumptions, (3) De Jong

(20) proposed a version of the power function which generates two

components, a fixed component which is set equal to the irreducible

portion of the task, and a variable component, which is subject to

learning.

Y =a[$ + (1 - O)X'b3

De Jong calls this fixed component, the "factor of incompressibility".

He explains that this factor is dependent not only on the nature of the

work but also upon the commencing combination of skill and familiarity

_ __ _
* ____ __--
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with the work In hand. The times for manual operations per cycle will

fall gradually, but nnt to zero as porposed oy the standard power

function (Wright) at infinity. They will tend to approach a certain

limiting value. (4) Levy (21) presented a learning function which reaches

a plateau and does not continue to decrease or increase as does the power j
function.

An overriding point express(-d was that there are no specific
I

learning curves which have universal application.A

Thus far, the discussion of learning and learning curves has been

focused on the general theory, aspects of individual learning curves

and some industrial applications of learning curve theory. This back-

ground will now ba used to expand into the area of group/team traininq
/

and performance.

Group/Team Training and Performance

Several studies and laboratory experiments have been conducted

in the area of group/team training and performance. Some of these take

the form of a literature survey on publications relevant to team training

and evaluation, while others report on actual laboratory cases or

experiments concerning team function, structure and performance.

A distinction was drawn between the terms team and small group.

Glaser, Klaus and Egerman (22,23) state that although both refer to

collections of individuals acting in consort, a team is usually well

organized, high'v structured, and has relatively formal operating

procedures.. .as exemplified by a baseball team, an aircraft crew, or a

ship control team. Teams generally display the followMing characteristics:
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1. relatively rigid in structure, orgainization, and
communication networks,

2. have well defined positions or member assignments so
that the participation in a given task by each individual
can be anticipated to a given extent,

3. depend on the cooperative or coordinated participation of
several specialized individuals whose activities con~tain
little overlap and who must each perform their task ý.t
least at some minimum level of proficiency,

4. are often involved With equipment or tasks requiring
perceptual -motor activities.

5. can be given specific guidance on job performance based
on a task-analysis of the team's equipment, mission,
or situation (23).

A small group, on the other hand, rarely is so formal or has well-

defined, specialized tasks --- as exemplified by a jury, a board of J

trustees, or a personnel evaluation board (23). As contrasted with aA

team, small groups generally have the following characteristics:

1. have an indefinite structure, organization, and
communication network,

2. have assumed rather than designated positions or
assignments so that each individual's contribution
to the accomplishment of the task is largely depen-
dent on his own personal characteristics,

3. de'pend mainly on the quality of independent, individual
contributions and can frequently function well even
when one or several members are not contributing at all,

4. are often involved with complex decision-making
activities,

5. cannot be given much specific c'uidance beforehand since
the qtjulity and quantity of participation by individual
members is not known.

In a review of team training and evaluation by the Human ResourcesJ

Research Organization (HUMRRO) (24), the authors state that the review

was undertaken in- order 16o provide an information base that the Defense
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Advanced Research Projects Agency could use as a foundation to facilitate
decisions regarding future research program support.

The technical report (24) reported the following findings and

implications:

As an aid toward organizing and analyzing the team training

information obtained, a classification scheme was used to categorize the

training techniques and situations discussed in this review along two

dimensions. On one dimension, training focus, a distinction was made

between "team" training and 'multi-individual" training. Multi-individual

training occurs in a group context but focuses on the development of

individual skills. Team training, on the other hand, is focused on

developing team skills such as coordination and cooperation. The type

of task situation was the second dimension used to classify the training A

techniques reviewed. Task situations were categorized as either "estab-

lished" or "emergent." Established situations are those in which the

tasks and the activities required to perform these tasks can be almost

completely specified. Emergent situations are those in which all tasks

and activities cannot be specified and the probable consequences of certain

actions cannot be predicted. This type of situation allows for unantici-

pated behaviors to emerge.

Team training studies and practices were categorized according

to the classification scheme described. These studies followed two

conceptual models of team behavior-response (S-R) and organismic. The

S-R model adherents tended to study team training in laboratory settings

derived from established task situations. More realistic environments

were used by other researchers who attended to emergent factors in the

_ _ __._ _ .4
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job situation (the organismic approach). It was this latter group of

investigators who demonstrated the need for training in team skills,

even though individual skill proficiency was found to be a prerequisite

for effective team training and performance, other conclusions which

were drawn from the literature are:

1. The team context is not the proper location for initial

individual skill acquisition.

2. Performance feedback is critical to the learning of team

skills, as well as individual skills.

Several examples of team training techniques currently in use in

the military services are also presented in the report; for example,

ARMY TRAINING AND EVALUATION PROGRAM (ARrEP), REALTRAIN, Naval Training

Device Center (NAVTRADEVCEN) program, etc.

In the Final Summary Report by Klaus, Glaser, and others (23),

a brief description of the seven studies undertaken are briefly

described along with their purpose and major results.

Report 1 described the approach being examined in the Team

Training Laboratory, one which considered the team and its output or

product rather than the performance of its individual members as the

focus of investigation (25).

Report 2 reported on the acquisition and extinction of a team

response, a demonstration that basic principles of individual learning

could be applied to the team considered as a single entity (26).

Report 3 presente~d an experiment on the inclusion oF parallel or

"redundant" members in a team which confirmed an hypothesis derived from

the underlying approach that redundancy could result in eventual
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decrements in team performance (27).

Report 4 further analyzed the effects of internal team structure

on the development and iaintenance of a team response based upon the degree

of correspondence between individual performance and feedback supplied to

the team (28).

Report 5 identified the relationships among team member character-

istics, the conditions of team training and the speed and thoroughness

with which teams developed proficiency that could be demonstrated

empiricaliy (29).

Report 6 explained the value of more gradual ly introducing the low

ratios of reinforcement typical of early team performance providing

supplemental, supervisory-furnished feedback to team members (30).

Report 7 presents three studies on the simulation of team

environment which considered the degree to which the approach

facilitated the replication of team learning phenomenon based on the

performance of a single individual (31).

The studies enabled-the researchers to derive a learning theory

model of team performance from among those psychological models of

individual behavior which have proved most useful in understanding the

conditions likely to affect training practice.

The underlying model has three essential features (24). First

a team is a functioning entity having an output which depends on a

defined input from its members. Second, a team itself can be considered

as the module of investigation and its responses as amenable to manipula-

tion without necessary reference to the performance of individual team

members. Third, team performance can and will vary as d function of the
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consequences of responses much the same as the performance of an

individual learner. *
In Technical Report 1 (25), the first team acquisition curve

obtained in the Team Training Laboratory is sho3wn in the bottom half of

Figure 2-4.

The curve is a plot of the number of correct 'team responses

per experimental period. It appears from the correspondence between

the two curves that the team response shows acquisition characteristics

similar to an individual response. The authors state that the apparent

K improvement in team performance leading to an asymptote, can tentatively

be explained on the basis of a temporary reduction in individual

proficiency upon entering a team reinforcement situation. Thus, the

fact that the team changes in proficiency as a result of training does

not require assumptions as to characteristics of a team which are over

and above the learning characteristics possessed by its individual members.

This study is concerned with group or team models, where the data

was obtained from operational tests. The type of tasks involved are

those which depict learning situations wherein decreasing scores indicate

improvement, such as fewer errors or decreasing performance times on

successive trials. Therefore, the learning curves are expected to follow

some form of the negative acceleration theoretical curve model.

Since the team/crews are organized into two or more members

(tank crew, mortar crew) their organization is characteristic of those

described by Glaser, Klaus, and Egermian (23). In that context the

basi4c principles of individual learning curve robustness will be

assumed and analysis of the empirical data will procede along that line.
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Figure 2-4. Comparison of Individual andIi Team Learning Curves (25)
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Various models described previously, such as the power function
with variations and exponential models, will be used to fit the empirical

data and then analyzed for model adequacy. The methodology used to

tie empirical data and analyze results will be discussed in Chapter

It was made clear through contacts with other sources of data

that considerable interest is presently being generated in the area of

group/team learning. Several proposed tests are being considered to

analyze group learning. As discussed earlier, the analogy between

individual learning and group learning suggests the substitution of'

the organization for the individual when using the classical learning

model.

The Training and Doctrine Command (TRADOC) has conducted an

extensive study into training cost procedures and the utilization of

learning curve theory in the assessment of training proficiency. These

studies include the assessment of both individual and group learning

models along with validated performance measures. The Army Research

Institute (ARI) has also planned tests which will attempt to makce

an assessment of group training.
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CHAPTER III

METHODOLOGY

Onie of the principle objectives of this research is to determine

the existence of a representative learning curve (or set of curves) and

to develop a mathematical description of this curve applicable to

training levels in operational testing. The existence of a representa-

tive learning curve could be used to develop improved operational test

and evaluation methodology for training effectiveness. To determine

whether there is a demonstrable learning curve for team/crew performance,

it was necessary to collect and analyze data from operational test

reports. Each data set will be analyzed iteratively utilizing the

following procedures.

1. Determuine graphically if learning patterns exist. Sample

data will be plotted to determine if there are patterns in the empirical

data which might suggest that learning can be detected. The performance

measure is plotted against consecutive trial;t.

2. Fit Linear Model.

Simple linea' regression is used to fit the linear model to

empirical data and~ the null hypothesis, that the slope of the regression A

line is equal to zero, will be tested. In data sets where the time

component or measurement of error is used as a performance measure,

the slope of the regression line is expected to be negative and should

not include zero in the confidence interval constructed around the

-~~~ ------
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slope. This condition reflects that there is an indication of learning

in the data. If no learning is detected the data is not subjected

to further analysis.

3. Fit Nonlinear Model.I

Upon determining the suitability of the data, that is, graphically

detecting discernible patterns and rejecting the null hypothesis that

the slope of the regression line is zero, nonlinear models are used

to fit the data. These include learning models suggested in the litera-

ture and/or variations based on the graphical patterns of the raw data

(see Table 3-1). The selection of models is restricted to functional

relationships between two variables whereby, the performance measure

(Y) can be separated from the trials (t) in such a way that Y =f(t).

Using this relationship, the performance measure is considered to be

the dependent variable and the consecutive trial is the independent

variable. Parameter estimates and a residual sum of squares are

obtained by fittinci the nonlinear model.

4. Test for Model Adequacy.

The assumption is made that the learning model fit in Step 3

is adequate. A test for "goodness of fit" of the model is used to

verify that assumption utilizing the analysis of variance conducted

for the significance of regression. A lack of fit test is performed

when repeat observations in the data are available. This is done by

constructing a lack of fit ratio which will be discussed later.

Additionally, the statistical inferences on the model are checked throuqh

a direct examination of residuals, Model adjustments are made based

on this examination of residuals and a careful examination of outliers
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Table 3-1. Learning Models

Model Origin

Y at T.P. Wright (1

=a[o+(l-a)t] De Jong (20)

Y = t-l + s Pegels (17

Y c a

T -ae bt *mnodels suggested
by graphical

Y aebt * patterns in the ,
Y tb *data (32)
Y•at +c*

+ C*
= t+b

-i

I _.__
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if any, When adjustments are made, the iterative procedure returns

to step 3 and the model is refit and tested for adequacy.

At this point another learning model or adjusted model is

fit to the sample data and checked for model adequacy.I

After Fitting all selected models for a particular data sample,

a comparison of models is conducted in step 5 and a new data set isI

introduced at step 1.

5. Selection of "Best" Model.

The criterion for evaluating the l-itted learning models and

selecting the model that provides the "best" fit to the empirical data

will be based on the comparison of (1) the lack of fit ratio, and

(2) the sumn of squares for regression (SSR, the amount of variation in

the model explained by regression). This criterion is used because

it is a systematic and quantitative basis for selecting the "best"

model.

The general procedures used in fitting the selected mathematical

models to the empirical data and analyzing the models for adequacy

involve regression techniques. These techniques provide:

(1) Parameter estimates for a given model.

(2) A measure of the error involved in estimating the parameters

and the error variance around the fitted model. The sum of squares

due to error is the amount of noise left in the data after the

regression line has been fit. Where applicable, repeat observations

are used to partition the error component into two parts, sum of squares

due to pure error (random componen~t) and sum of squares due to lack of

fft (bias component). Normally, the data collected during operational



26

tests do not contain repeat observations over trials, therefore, an

estimate of the sum of squares due to pure error is computed using

different crew observations over a specific trial. This actually

represents a measure of the random error between subjects (crews).

The regression procedures used are discussed in the following

sections.

Fitting Linear Models

As stated previously, linear regression will be used to fit

the linear model

tt Yt = O + 1tt +' Cis i Is1 2, 3s,....,n (3-1)

where t is the ith consecutive trial of the empirical data from

various test reports. For a given trial t, a corresponding observation

Y consists of the value a0 + 81 t plus an amount c, the increment by which

any individual Y may fall off the regression line. s and 0, are the

linear parameters in the model and are unknown as well as c, the error

or noise component which changes for each observation Y. The objectives

of this model are

(I) Estimate so, 01

(2) Screen data for suitability

The least-squares method is used to estimate the parameters 00

and 81. This method minimizes the sum of squares of deviations from

the true line and is written (33)

_______ ______________ _________k
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n n

S (Y1 - - t) 2  (3-2)

Estimates are chosen for o, and o,1 which produce the least possible

value of S.

The usual basic assumptions for this -,odel were made

(1) £1 is a random variable with mean zero and variance a

(unknown), that is, E(ei) = 0, V(ci) = a2

(2) ci and e. are uncorrelated, ij, so that COV (cl0.j) 0.

Thus, E(Yi) = 80 + 81, V(Yi) = a2 and Y and Y

ifj are uncorrelated.

Recall that the linear model is fit to develop some idea of

the relationship of the performance measure over consecutive trials.

When estimates of the parameters e0 and 81 are obtained, a screening

process is conducted to look at the slope (81) of the fitted model.

This screening process is used to determine if there is an indication

of learning over consecutive trials. We use the value from the

t-distribution table (with the appropriate degrees of freedom) to

obtain an estimate at a given level. We compare this value with the

ratio given by

1 -10

/-E/Sx

where MSE is an estimate of the variance and Sxx is the corrected sum

of squares of the trials. From this we would get some approximate idea

of whether or not the slope is negative.

_ _'p_



Since the performance measures in the data collected are time

components and measurements of error over consecutive trials, a negative

slope for the regression line would indicate that learning is taking

place over consecutive trials. The hypothesis test on the slope can be

modified since 0l 10 0 to test for the significance of Regression and

an Analysis of Variance can be conducted. For a further discussion of

this procedure see Draper and Smith (33).

Fitting Nonlinear Model

When hypothesis testing conducted after fitting the linear model

indicates that learning can be detected in the data, the nonlinear

learning models mentioned earlier are fit to the data. Parameter

estimates are obtained along with the residual sum of squares for use

in the model adequacy test.

The SPSS (Statistical Package for the Social Sciences) Subprogram

NONLINEAR (34) is used to apply nonlinear regression analysis to

estimate parameters that appear in the regression model in a nonlinear

fashion. The formn of the learning models in Table 3-1 are known

explicitly or come from an interpretation of the graphical patterns

iK the data. The SPSS NONLINEAR program utilizes the Least Squares

Estimation function to estimate the unknown parameters by minimizing

the error sum of squares. For each case, the performnance measure

(dependent variable) is defined:

Y f 1 (t,e) + ii 1, 29 ... , n (3-3)
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where fi(t,e) stands for the model function chosen, ci is the error

term, and e is a vector of parameter estimates.
2

The assumptions made are E(e) = 0 and V(e) = • . The error sum

of squares function can be written a.-

n
Y(Y) I - (to)]2

The program minimizes the sum of squares for the model fi(t,e) by

choosing suitable values for the unknown parameters (e) in the model.

This in turn will describe as close as possible the behavior of the

dependent variable Y.

Marquardt's nonlinear minimization technique is used to estimate

the Unknown parameters. It is a compromise between the linearization

(or Taylor series) method and the steepest descent method and appears

to combine the best features of both while avoiding their most serious

limitations. It almost always converges and does not slow down as it

approaches the ;olution.

The idea of Marquardt~s method can be explained briefly as

follows (33,34). We start from a certain point in the parameter space,

6. The method of steepest descent is applied and a certain vector

direction, 6g where g stands for gradient, is obtained for movement

away from the initial Ooint. Because of atte.,uation in the S(oe but

may not be the best overall direction. However, the best direction

must be within 900 of 6g or else S(e) will get larger locally. The

linearization (or Taylor series) method truncated after the second term
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leads to another correction vector 6 given by the linear model

00 = (Z0 O)'Zl(Y-fO) (3-5)

where 0 is the parameter estimate vector, Z0 is an nxp matrix containing

1.the first partial derivatives and Z is its transpose matrix, and

(Y - ) is a vector containing the residuals (actual observation -

predicted value).

However, instead of using the linear model to solve for the

parameter estimates, Marquardt's method uses the following equation:

0°= (Z° Z + r)-I Zo (Y-fo) (3-6)

where I is the identity matrix and x is a correction factor. For the

first iteration x is set to zero and it remains zero for all subsequent

iterations as long as the sum of squares function is reduced. If at

some iteration, say iteration r, the sum of squares function is

increased, then x is replaced with the following expressions:

1
+ Br Br

A + 88(i Z +
r r Z+ rI)0

and the solution in (3-6) is tried again. (This correction tends to

reduce the Euclidean norm of or to one-half its previous value). Therl

value of x is corrected repeatedly until the sum of squares function is

reduced (or until) the members in 8r are too small to be meaningful,
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i.e., the norm of $r has been reduced beyond a tolerance level (34).

Since the program requires initial estimates of the unknown

parameters, a computer program was used to provide them using data from

the test reports and is listed in Appendix B.

After the nonlinear model is fit, a direct examination of

residuals is coiiducted and a lack of fit ratio is computed for comparison

with other models.

If the original observations of a sample data set do not

conform to the model assumptions made, tChen a log transform of the model

may possibly correct the problem. When a direct examination of the

residuals for a model indicates that the error component is multipli-

cative instead of additive, then the log transform of the model should

be computed and fitted to the sample data. For example, the model

Y= at- b has multiplicative error when expressed Y - at-be and additive

error when expressed as Y = a + c. In the former case the log

transform can be specified as InY = Ina - bint + Inc but in the latter

case the log transform cannot be specified. rhe multiplicative error

is exemplified when variability becomes a function of the magnitude of

bLhe responses such as cases where large errors are linked with large

responses.

When the log transform model is linear it is fit using step 2,

when otherwise specified step 3 is used, and then tested for model

adequacy. When comparisons are made between the log transferm models

and nonlinear models in step 5 of the iterative process, the parameter

estimates must be converted in order to compare sum of squares.



32

Model Adequacy

As stated previously, the learning models chosen to fit to sample

data from the various test reports are assumed to be tentatively correct.

Uinder certain conditions we can check whether or not the models are

correct. This will be donIe by testing for model adequacy using a

"goodness of fit" test and through a direct examination of residuals.

The residual at each trial is defined as the amount by which the actual

observed value Y.. differs from the fitted value Y.i and can be written

as e. Y. Y. If the learning model chosen is not correct, then

the residuals contain both random (variance error) and systematic (bias

error) components.

R- .all that during operational tests, repeat observations a,,e

not take!n for each crew across trials. However, all crews are observed

at each consecutive trial and are assumed to be similar ini structure

and training level. Therefore, several crew observations at the same

trial t. are considered repeat points in the data. These "repeats" are
1

used to obtain an estimate of a2 and represents a measure of the random

error between crews. As a consequence, we can test for the "goodness

of fit" of our leirning model. The hypothesis tested (33,35) can be

stated:

H : The model adequately fits the data

H1I: The model does not fit the data

The test involves partitioning the error or residual sum of squares into

the following two components:

SSE SSP + SSLO (3-7)

A
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where SSpE is the sum of squares attributable to random error between

crews and SSLOF is The sum of squares attributable to the lack of fit of

the model. The pure error estimate of a2 is found by computing the

contribution to the pure error sum of squares from the ith consecutive

trial when there are at least two observations, such that

YIII'Y2''''' YlnI are nI repeat observations at t I np

Y21'Y 22 "9' Y2n are n2 repeat observations at t 22J
Ykl'Yk2''''' T kn are n repeat observations at tk 'I

k kk

Thetotal sum of squares for pure error is calculated as follows:

m n"
SSPE Y V )2 (3-8)

1=1 p1

where m is the number of distinct levels of t,

ni is the number of observations at trial i,
Y. is a single observation, and

Y is the sample mean across a particular trial.

The total degrees of freedom associated with the total sum of squares

pure error is computed as follows:

K K
tot3l degrees of freedom = = (nt-l) - ni" K = n

1=l i-I K e

The sum of squares for lack of fit is computed by subtraction

A

SSLOF = SSE - SSPE

__ _ __ _ .. ..... . -- , -* -;: . ..-:-.- -i•_:.. •' i'-'. .__ _ _ "o
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with n- 2- ne degrees of freedom, where n is the total number ofei
observations (35). The mean square for pure error is

m ni
SSpE tl=[ (Yi"

MPE t=l U=i (1 11 -j)MSPE - nWe- K
J=1 ni- K

2and is an estimate of a .

The pure error sum of squares is introduced into the analysis
MSLoF

of variance procedure and the F-ratio is computed. This ratio, F = - i
MSP

is compared with the lO0(l-a)% point of an F-distribution with (n-ne)

and ne degrees of freedom if the normality assumption is satisfied. If

the ratio is

(1) Significant, this indicates that the model appears to be

inadequate. Attempts would be made to discover where and how the

inadequacy occurs.

(2) Not significant, this indicates that there appears to be

no reason to doubt the adequacy of the model and both pure error and

lack of fit mean squares can be pooled and used as estimates of a2

The usual tests wh'ch are appropriate in the linear model case

are, in general, not appropriate when the model is nonlinear (33). As

a practical procedure we can compare the unexplained variation with an

estimate of V(Y ) = a but cannot use the F-statistic to obtain conclu-

sions at any stated level. In the absence of exact results for the

nonlinear models, we can regard this sum of squares as being based on the

sionsat.ay stted evel-In he-asenc.of xactresuts'fr.th
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total degr,,es of freedom for residuals/error. In the nonlinear case

this does not in general, lead to an unbiased estimate of a2 as in the

linear case, even when the model is correct.

A pure error estimate of a2 can be obtained from the repeat

observations as discussed earlier. This provides a sum of squares (SSPEI

with n e degrees of freedom. An approximate idea of possible lack of fit

can be obtained by evaluating SSE - S5PE = SSLoF and comparing mean

squares.

___ 
55PE

So LOFand MSPE n

SLoF = n'ne E ne

Draper and Smith state that an F-test is not applicable here but that

we can use the value from the table (with the appropriate degrees of

freedom) as a measure of comparison. From this we would get some

approximate idea of how well the learning model fits. Measures of non-

linearity suggested by E.M.L. Beale (36,37) can be used to help decide

when linearized results provide acceptable approkimations, but they are

not used for this study.

Since residuals are measures of the error component, the assump-

tions made concerning the selected model and an assessment of model

adequacy can be evaluated through a direct examinaticn of residuals.

Recall that residuals ei, i = 1, 2, ... , n represent the deviation of

the observations after the regression line has been fit and can be
A A

expressed e, = Y i where Y is an observation and Y is the corres-

ponding fitted value obtained by use of the fitted regression equation
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(33). From this definition, the residuals ei are the differences between

what is actually observed, and what is predicted by the regression

equation. That is, the amount -which the regression equation has not been

able to explain or the observed errors if the model is correct.

The usual assumptions are that the errors are independent

2
(uncorrelated), have zero mean, and a constant variance, a. If in

fact, the errors in the sample data follow a normal distribution, the

F-test can be made. Through a direct examination of the residuals we

can conclude either (1) the assumptions appear to be violated or (2)

the assumptions do not appear to be violated. This direct examination

will be done by plotting the residuals (1) overall, (2) in time sequence,

and (3) constructing histograms of the residuals. If the learning

model is r-rrect the residuals should resemble observations from a

noruml distribution with zero mean. The patterns of the plotted residuals

will also give indications about homogeneity of variances, abnormality,

and an indication of possible outliers - unusual points in the data

that are far greater than the rest in absolute value, and perhaps lies

three or four stanlard deviations or further from the mean of the

residu.-1s. The errors may be linked to equipment failures or errors

in recording the observations and should be obtained from background

information concer i'"1 the various test raports.

To deter,. ie if the residuals are independent, an estimate of

their autocorrelation function is obtained and examined. An estimate of

autocorrelation coefficient at a particular lag is computed using the

following expression:
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N-p-IS

where N equals number of residuals, Yt is the computed residual at trial

t, x equals lag, is the sample mean and S2 is an estimate of the

variance.

Al

-i

____ ___ ____ ___ ___ ____ ___ __
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CHAPTER IV

DATA ANALYSIS

The first major task in this research study was that of data

collection. Although OTEA was the primary source of data, other Army

agencies in the training analysis area were also contacted. These

include, the Army Research Institute (ARI), Training Development Division/

System Analysis Branch of the Infantry School, The Infantry Board

(USAIB), and the TRADOC Combined Arms Training Agency (TCATA). OTEA

provided operational test reports or extracts concerning data relating

to performance/learning in past tests, and made available, knowledge-

able personnel to provide background information where possible.

Due to the nature of the study, there were limitations placed

on the characteristics of the data required. The limitations are listed

below:

I. Data had to come frowl an operational testing environment.

2. Tests conducted should involve team/crew tasks and
performance objectives.

3. Criterion or measures of effectiveness must be applicable
to team/crew tasks within the context of group or team
definitions as discussed in Chapter II.

4. Test reports must provide a means of tracking a team/crew
from start to finish. That is, performance measured over
time or consecutive trials.

5. When applicable, test reports should provide some insight
into the background infromation concerning the data relevant
to this study, such as measurement error and conditions that
may have affected the test results ("noise" in the data).
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It became apparent from the outset that little empirical data

was available in the context mentioned above. Factors affecting the

availability of data were:

1. The cost is prohibitive or infeasible to conduct more than
one or twc trials in scme data collection efforts.

2. Crew or group membership changes rapidly and significantly
affects the results.

3. In some cases where test reports were selected, adequate
information was not available to trace a particular crew
from start ot finish. Therefore, changes in performance
could not be adequately established or inferred.

Descriptions of the data collected and their analysis will be discussed

in the following sections. Table 4-1 lists each sample data set and its

origin.

Al

Table 4-1. Data Base

Title Origin

Improved Tow Vehicle (ITV) (38) OTEA

Dragon (39) OTEA

REALTRAIN Validation with
Combat Units in Europe (40) ARI

REALTRAIN Validation for
Rifle Squads (41) ARI

Project Stalk (42)

Lightweight Company Mortar
System (OTI) (43) OTEA

Team Trainingi(Experiment VIII) (44) NAVTRADEVCIEN

__ _ _ _ _ _ __ _ _ __ _ _

(i_ lI
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Improved Tow Vehicle (ITV)

The ITV operational test was conducted to compare four systems

with each having six dedicated gun crews with alternates. The gunners

tracked targets over four range bands which included two target profiles.

All gunners were trained and ranked on a baseline system prior to allo-

c•tion to separate systems. Additionally, contractor training was

conducted for gunners assigned to the new system. A summarized

description is provided below:

1. Performance measure - Root mean Square Error (RMS)

2. Characteristics

(a) Four systems
(b) 24 primary gunners
kc) 5 gunners
(d) Approximately 12 to 16 trials per gun crew with a

total of 1760 observations
(e) Type of activity - tracking

It should be noted that in the context of the dpfinition of

group/team learning tasks, tV- performance measure (RMS) analyzed does

not reflect a team measure of effectiveness. However, since this was

the initial data sample received and thought to contain detectable

tearning, an analysis was still performed.

In the initial analysis of the ITV data sample it was felt that

there might be some effect on the data due to specific combinations of

range and target profile (evasive maneuvers). Therefore, an analysis was

conducted to determine if some adjustment was required for these effects.

All possible combinations (8) of range and target profile were computed

and a linear regression procedure was performed to estimate which com-

bination should be adjusted. The results of the regression procedure

S ...... j..
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indicated that while the overall regression appeared to be significant

at the 5 percent level, the confidence intervals around the parameter

estimates included zero and it was concluded that no specific combination

of range and target profile had a significant effect. Therefore, no
adjustment procedure was employed and the iterative analysis procedure

was initiated.

Twenty-four (24) individual gun crew data polts were made to

determine if a discernible pattern indicated learning over consecutive

trials. The majority of the plots do not indicate such a pattern and

there were only a few rare cases in which some slight indication of

learning could be detected. Represerptative plots are shown in Figjures

A-1 through A-6. In addition 24 plots of the linear regression line

with a 95 percent confidence interval were made and they depicted similar

results.

An aggregate data sample for each system was developed using the

average response for the crews at each trial. Fitting the linear -model

in step 2 of the iterative procedure shows the following results for

the four systems analyzed.

System A

Sum of Mean
Source d.f. Squares Square

Regression 1 .00157 .00157

Residual 60 .04771 .0007952J

F-ratio .00157 1.974.00080-
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When compared to the F-distribution value for 1 and 60 degrees of

freedom at the 5 percent level, there Is no evidence to reject that

0. The confidence interval around i, includes zero and it appears

that learning cannot be detected.

System B

Sum of Mean
Source d.f. Squares Square

Regression 1 .00926 ...0920

Residual 55 .03370 .00061

F-ratio = 7 = 15.11089
*Significant at the 5 percent level '1

For the System B, the confidence interval around a1 doe not include

zero and a = .004388 which indicates that there is detectable learning.

System C

Sum of Mean
Source d.f. Squaves Square

Regression 1 .00029 .00029

Residual 75 .10931 .00146

F-ratio a . = .19907
*Not significant at 5 percent level

-r------
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System D

Sum of Mean

Source d.f. Squares Square

Regression 1 .00163 .0C163

Residual 99 .02448 .00028

•.00163
F-ratio = - = 5.9146.00028
*Significant at the 5 percent level,

Systems B and D appear to have detectable learning while systems

A and C did not. Since system B appears to have the largest F-ratio

and slope estimate, the aggregate data sample was modified to use the

individual crew response at each trial. This was done to provide an

estimate of the lack of fit when the nonlinear models were fit in step

3 of the iterative procedure. The results of fitting the nonlinear

models are shown in Table 4-2. The exponential model Y = aebt where
- tb

a = .040708, b = -. 009424 and the power functlon t = where a

.047369 and b = .13539, appear to provide an adequate fit to the sample

data.

Since the performance meosure actually represents an individual

measure of effectiveness further anlaysis was not undertaken.

Dragon

An operational test on the dragon weapon's system was conducted

by OTEA using 32 gun crews. Gun crews tracked and fired on targets at

various range bands. E..h crew was observed over 15-20 consecutive

J
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Table 4-Z.. Comparative Results for Fitted Models
(System B(ITV))

Lack of

Model SSE SSLOF SSR Fit
Ratio

bat- .29665006 .04937006 .336350 .78967

S= aebt .2953304 .04775 .3375696 .7637638

Y= aeb't .3015603 .0542803 .3313397 .8683320

S= a[B+(l1-)tb] .30302805 .05574805 .32987195 .89169

Y= c(at ') + a .30302805 .05574805 .32987195 .89169

at- + c .29606377 .04878377 .336836 .78029

= a + c .29557716 .0482972 .33732284 .77251

SSpE = .24728

PE
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trials. A summarized description is provided below.

1. Performance Measure - Time components (seconds)

(a) Identification of target to launch JT2)
(b) Time between target hit and disposal of used round (T-1)

2. Characteristics

(a) 32 gun crews
(b) Type of activity - tracking

The two time components, T2 and T4, were both plotted against consecutive

tirals. The graphical representations show no discernible learning

patterns in the data. Representative plots are shown in Figures A-7

through A-9. Furthermore, the linear regression shows that the slope

(B1 ) of the regression line is essentially zero.

T2 Aggregate

Sum of Mean
Source d.f. Squares Squares

Regression 1 35.29688 35.29688

Residuals 166 253026.55431 1584.449/32

F-ratio = 35.29688 .1584.49732 - .02228
*not significant at 5 percent level

T4 Aggregate

Source d.f. Sum of Mean
Squares Squares

Regression 1 3.83857 3.83857

Residuals 155 9285.15548 55.93467

F-ratio 3.83857 .06863
*not significant at 5 percent level
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Since ttie Dragon sample data fails to meet the suitability criteria

during the screening process, no further analysis is performed.

REALTRAIN Validation with Combat Units in Europe

The REALTRAIN exercise provided a two-sided, free-play situation

'for infantry and armor units in a simulated tactical environment. It

provided for a sequential record of events during each engagement which

included an assessment of casualties. A summarized description is

provided below.

1. Performance measure - Casualty rate

2. Characteristics

(a) Two teams (conventional training vs REAL'tRAIN methods)
(b) Each team ctnsisted of

(1) rank Platoon
(2) Two Infantry Squads
(3) Tow Section

This sample was deemed inappropriate because it contained consolidated

data over two trials. That is, the exercise was run over two or three

phases and all observations were averaged together and displayed in

graphical form. Raw data for each unit was not available. Since our

learning models contain at least two unknown parameters, further analy-

sis would be misleading.

REALTRAIN Validation for Rifle Squads

This REALTRAIN exercise provided a two-sided, free-play situation

for 18 rifle squads. Mine squads were trained using REALTRAIN techniques

and the other nine squads were trained using conventional techniques.

The rifle squads were pitted against each other (REALTRAIN vs
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Conventional) in a simulated tactical environment. An assessment of

the casualty rate (sustained vs inflicted) was recorded during each

engagement. A summarized description is provided below.

1. Performance Measure - Casualty rate (sustainel vs inflicted)

2. Characteristics

(a) Two training met~iods - Conventional vs REALTRAIIN
(b) 18 rifle squads
(c) 9 squads/training method
(d) Type Of Test - Tactical Exercise

Observations for all squads were averaged and displayed graphically.

Only two phases (trials) of the exercise were conducted. Therefore,

it was also concluded that this data sample was inappropriate for

analysis.

Project Stalk

Twenty-five tank crews operating under conditions of competitive

stress and rigidly uniform training were timed in their performance

at hitting a stationary target which appeared suddenly as a result of

the travel of their tank. Eleven different conditions of tank and fire

control conditions were run by each of the twenty-five crews participating

in the test. Crews were given instructions to obtain a target hit in

a minimum time. Crews were timed in their speed at recognizing the

target, loading the round, laying the gun, etc., until a hit was

obtained. Two typed of test courses were used. On the first type,

range and characteristics of the target and tank positions were repeat-

Aedly observed by the crews. On the second course none of these factors

iswere known by the crews. The experimental design was such that factors

related to differences in training, testing conditions, and crew
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proficiency could be accounted for when comparing the performance of

the five tanks. A summarized description is shown below.

1. Performance Measure - Time of detection to hit on target

2. Characteristics

(a) Twenty-five crews
()Five types of tanks used

(c) Each crew was trained on a tank immediately prior to
firing it.

(di) Type of activity - Tank gunnery

Data for sixteen of the twenty-five crews were used because itAI

was felt that this provided an adequate number of degrees of freedom

and the addition of the others would only marginally affect the results.

In addition, because of the time required to extract the data from the

test reports, it appeared that the sixteen crews selected adequately

represented the data sample. Background information indicated no

rank-order performance in assigning tank crews to the five platoons.

Therefore, the selection of the 16 crews did not appear to perpetuate

any bias effect in the analysis. Each crew was trained under rigidly

uniform conditions and given the same instructions during the conduct

of the test. Background information also reveals that

The crew differences in recognition time are snia to crew
differences observed for other operations and exhibit the
normal spread of proficiency attainment of human beings. It
has been observed that, whatever the ultimate cause of crew
differences in recognition time, they were appreciable and
reasonably constant .... The correlation coefficient between :
the average recognition time of each of the individual crews
on the Test Course targets and the average recognition time
of the corresponding crews on Training Test Courses targets
is indicative of the crew consistency. (43)

Data was plotted for the sixteen crews and the patterns of the plots

showed significant learning (see Figures A-10 through A-li).
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Background information revealed that the recognition to hit time

reflected the reduced times to perform the individual operations with

training by decreasing from an average for the four non-transfer

targets on the Te.- Course of 66.4 seconds for Phase I to 33.1 seconds

in the final phase (43). Only observations for non-transfer targets

were used becatise target 4 in the Test Traininc Course (TTC) and target

5 in the Test Course (TC) required the unloading and reloading of

another round in the gun. For example, in the former case, target 3

required AP (antipersonnel,) ammunition and the gun is immediately

reloaded upon firing a round at any target in anticipation of another

being required. After getting a hit on target 3, the loader had to

unload the AP round and store it, then load the proper HE (high

explosive) round for target 4. This procedure resulted in a longer

first round load time by about 20 seconds more than was required at other

targets (43).

The times to achieve a target hit were found to decrease markedly

with crew training. Although the hitting probabilities were found

not to increase with training, the time to load the rounds and lay the

gun decreased greatly with the training given the crews during the

test.

Two aggregate data sets for both the Test Training Course (TTC)I
and the Test Course (TC) were developed by combining the data for the

16 crews across the four non-transfer targets and the eleven conditionsA

for each target. This provided a method of tracking the crew performancesA

throughout the test according to the Greco-Latin test design used.

The TTC data consisted of 678 observations and the TC data consisted of
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674 observations over 44 trials. When the linear model was fit to both

data sets in step 2 of the screening process, the following results were

indicated.

TTC

Sum of Mean
Source d.f. Squares Square

Regression 1 87726.475 87726.475

Residuals 676 2827995.42068 4183.425

87726.475F-ratio = 4183.425 20.97

TC
Sum of Mean

Source d.f. Squares Square

Regression 1 82522.39281 82522.39281

Residuals 672 2440873.25556 3632.259308

F-ratio = 82522.39281 = 22.719

3632.259308

When compared to the F-distribution value for the appropriate

degrees of freedom at the 5 percent level, there was evidence to reject

that = 0. The confidence intervals around 81 for both data sets did

not include zero. Since the estimates of al were both negative, there

was an indication that learning was occurring.

Both data sets satisfied the suitability criteria specified in

the screening process; therefore, the nonlinear learning models listed

in Table 3-1 were fit to the data.
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Initially three models were fit.

(1) Y -atb

(2) Y=aebt

(3) Y=aeb/t

First analyze the Test Training Course data. Parameter estimates

and a residual sum of squares were obtained by uslAg the SPSS Nonlinear

Subprogram.

(1) = atb where a = 86.13708 b -. 173043 SS = 2851060.4

(2) Y = aebt where a = 77.2504 b = -. 01792 SSE = 2822300.5

yE

(3) = aeb/t where a = 51.51 b = .31028 SS= 2906957.3

To obtain an approximate idea of the lack of fit of the models, a pure

error estimate of a2 was computed as discussed in Chapter III by using

the 16 crew observwtions over each trial.

44 -2SSpE = Z • A Yiu - = 2339080.18552

i 11

Since SSE = S5PE + SSLoF' the sum of squares for lack of fit was obtained

-b
by subtraction. Using the model Y = atb,

SSLoF = S -S pE = 20851060.4 - 2339080.18552

= 511980.214

A lack of fit ratio was obtained by comparing the mean squares.
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SLoF.. 511980.214 12190.00512
MSLOF n-ne 42

- SSPE 2339080.18552 = 3689.4009
nePE n 634

Lack of Fit ratio = 12190.00512 = 3.304

Lack of Fit 009

The lack of fit ratios for (2) and (3) are shown in Table 4-3. To

further test the model for adequacy, a direct examination at residuals

was conducted. Figure A-18 shows an overall plot of the average resi-

duals across the 44 trials for the 16 crews. By visual inspection it

appeared that the average residuals at trials 1, 4, and 42 were atypical

of the others. The majority of the individual residuals appeared to be J

±3 standard deviations from the mean of the residuals at those trials.

Even though there were one or two residuals which did not exceed the

criteria, it vas concluded that the removal of the entire set of obser-

vations would not adversely affect the analysis,. The model Y at-b

appears to fit the data and is :selected as the "best" model. Even

though De Jong's model and Y = atb + c appear to have a somewhat

smaller lack of fit ratio with corresponding larger SS regression, the

power function (Y = atb) is selected due to parsimony. That is, it

has fewer parameters and does not appear to be significantly different

-bfrom the model Y at- where a = 104.595 and b = -. 26492.

After fitting and selecting the "best" model we must further

examine its adequacy. We compute the residuals e. = Yj - Y. and tYhn
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Table 4-3. Comparative Results for Fitted Models (TTC)

•.Lack of
Model SSE SSLoF SSR Fat oatio

E LOF RFit Ratio

= atb 2851060.4 511980.214 1991541.85 3.304

= aebt 2822300.5 483220.314 2020301.75 3.119

= aeb/t 2906357.3 557877.114 1935644.95 3.665

lnY = Ina-blnt 374.1706 73.8112 12.50802 3.710

nY = Ina+bt 369.6397 69.2803 17.03892 3.48186

nY = lna+b/t 384.5419 84.18246 2.13672 4.23078

SSpE = 2339080.1855 (Nonlinear models)

SSPE = 300.3594 (log transform models)

-..

L .. .. . . ... . . ... ...
I.. . . .. .• . . . • :., •:: . -, • , . . -
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Table 4-4. Comparative Results for Fitted Models (TTC)

(Adjusted Data)
Lack

ModelSS SS SSR of Fit
SE Ratio

= atb 1527619.0 166437.76 1626287.0 1.856

A= aebt 1529402.9 168221.66 1624503.1 1.876

= aeb/t 1545537.8 184356,374 1608368.2 2.06

Y_ a + c 1534004.0 172822.575 1519902.0 1.927

t+b

Y= aE8+(1-g)t b 1525856.8 164675.375 1628049.2 1.336

= at-b + c 1526337.5 165156.025 1627568.5 1.842

V= c(at-l)+ B 1597436.3 266255.06 1556469.7 2.635

InY = Ina:-blnt 310.0763 47.767 19.97871 2.765

InY = lna+bt 308./863 46.4774 21.269 2.690

InY = Ina + b/t 314.2337 51.925 15.82134 3.005

InY = a' + b't .32069 .04804 .76351 2.675

SSpE = 1361181.24 (Nonlinear models)

SSpE = 262.30890 (Log transform models)

SSPE .27265 (other)

NOTE: Atypical points at trials 1, 6, 42 removed.

-d

___° ,_ __- 
-7
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estimate and examine their autocorrelatlon function. The sample auto-

correlation function of the residuals is denoted by {Pk(e)} (46). Again,

the average residual across each trial is used. Rather than consider

the Pk(e)'s individually, we obtained an indication of whether the first

11 residual autocorrelations considered together indicate adequacy of

the model. As a general rule k lag coefficients are examined where

k S N/4. This estimate is obtained through an approximate Chi-square

test for model adequacy.

= .02758 P6 (e) = -. 38102

P2 (e) = -. 38909 P7 (e) = -. 03358

P3 (e) = -. 02111 Pa(e) = .37201

P4 (e) = .38570 p9 (e) = -. 16558

p5 (e) = -. 34704 plO(e) = -. 22597

Pll = .02670

Approximate Chi-square statistic

k
Q= (N) • pk(e)

k l

k =11 lags

Test Statistic Q = 34.57047

Comparing Q with a 5 percent value chi-square variable w/43 degrees

of~~~ ~ fedmwfidx 59.34. We conclude that there is no
of freedom, we findx20.05,43 W

strong evidence to reject the model.

For the model Y = 104.595 t"'26492 Figure A-19 shows a plot of

the residuals for each observation and they appear to come from an

approximate "peaked-normalz distribition. Fijurc A-20 shows a plot

____ ___.......__ * -
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2of the estimates of a at each trial (MS E and they tend to level off

after the 16th trial.

The nonlinear models fit to the Test Course data provided the

results shown in Table 4-5 for 674 observations over 44 trials. An

overall plot of the average residuals indicated that there were some

atypical points in the data sample. Atypical points were determined

by background data which indicated that factors extra*neous to the test

considerations had exerted undue influence. Additionally residuals

were judged to be atypical if they were t3 standard deviations from the

mean of the residuals at a specific trial. A total of 82 observations

were removed from the original aggregate data set. An adjusted data

set was refit after removing atypical points at a specific trial. The

AA

fit improved slightly for the exponential model Y = ae b while the

fit for the others appeared to get worse with the exception of De Jonq's

model, V=aIo + (l-Otb) It is also noted that the lack of fit

ratios were twice as large in the adjusted TC data as compared to the

TTC data. It appears that while learning was occurring, the "noise" or

extraneous factors prevent the fitting of a smooth curve to the data.

Those factors can be attributable to circumstances such as multiple

misfires, mechanical or firing system failures, and where ammunition had

to b drwn romstorage wells. It is noted that a mnulti-parameter

polynomial model may have fit the data but it was intuitive that a

learning curve would be a smooth curve rather than a "zig-zag" curve

in the case of a polynomial.

The parameter estimates for the two test courses are shown
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Table 4-5. Comparative Results far Fitted Models (TC)

Lack of
Model SSE SSLoF SSR FitI

Ratio .

= at-b 2468607.8 493855.022 2704131.2 3.7513

= abt 2440991.9 466239.122 2731747.1 3.5415

= aeb/t 2514968.3 540215.522 2657770.7 4.103

InY = Ina-blnt 389.61005 105.07188 16.90632 5.5391

AnY = Ina + bt 381.08081 96.54264 25.43555 5.0895

InY Ina + b/t 404.16331 119.625 2.35305 6.3063

SS PE =1974752.77787 (Nonlinear models)

SS PE =284.53817 (Log tilinsform models)

k..1

H4
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Table 4-6. Comparative Results for Fitted Models (TC)

(Adjusted Data)
Lack of

Model SSE SSLOF SSR Fit
Ratio

= atb 513771.03 123782.0216 1321367.97 4.141

= ae 496887.26 106898.2516 1333251.74 3.576

= aeb/t 551335.23 161346.222 1283803.77 5.398

S- 547924.68 157935.6716 1287214.32 5.284

S= aEa+(l-B)t-b] 506392.74 116943.7316 1328206.26 3.913 A
S= x(at'l) +0 562010.21 172021.2016 1273128.79 5.755

SSpE = 389989.00838

NOTE: Atypical points removed from data.

-I

........
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below for both the power function and the exponential models.

TTC
y -• at-b 

,

a - 104.595 b - .26492
y ebt ,

nae'
a - 74.i207 b - -. 019076

TC
Y-at-b

a - 76.3596 b - .180306

Y - aebt

a - 67.5696 b - -. 017967
1

A comparison indicates that the TTC model parameters are relatively

larger than those for the TC. In addition, the learning factor which

is represented by the parameter bappears to be larger for the Test

Tratni..g Course.

Lightweight Company _ortar System

The 81 mm Gunner's examination was conducted to establish base-

line data to use in comparing the 81 me mortar with the XII 224E1

Lightweight Company Mortar System. The ourpose of the test was to

establish the time it takes to set up and perform a mortar fire

mission and to refamiliarize the test crews with the 81 m mortar so

that they may be better able to compare ft with the XN 224E1. A

summarized descriptiou is given below.

1. Perfomance M4easure- Gunner's Examination Scores J
0 ".
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2. Characteristics

(a) Two systems tested

(b) 3 mortar squads
(c) Number of observations 4 - 81 mm mortar

3 - XM224EI mortar

(d) Type of activity - Performance Test

Seven complete gunner's examination were performed during OTI;

four for the 81 mm mortar and three for the XM 224EI/LWCMS. The latter

was not analyzed, even though there appeared to be learning patterns

in the data, because there were only three distinct trials and since

our learning models contain at least two unknown parameters, further

an.ilysis would be misleading. However, the four trials for the 81 mm

mortar data were analyzed. At each trial or phase, there were six tasks

performed:

(1) Mounting the mortar

(2) Small deflection and elevation change

(3) Referring the sight

(4) Large deflection and elevation change

(5) Reciprocal laging

(6) ganilpulat;on for traversing

A plot of the data is snown in Figure A-21. The baLkground information

indicates that the initial times required to perform the phases of

the gunner's examination were high due to the fact that the test platoon

had not worked with oortars fur several weeks and their level of

training was low. Upon comp~letion of the training program. times to
i perform the phases of the gunner's examination were minimized. (34)
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The plot of the scores over consecutive trials (phases) show

discernible pattern which indicates learning. In addition when the

linear model was fit in step 2, the following results were indicated.

Sum of Mean
Source d.f. Squares Square

]
Regression 1 15732.300 15732.300

Residuals 22 12880.200 585.46364

F-ratio = 15732.30
585.46364 26.87152

When compared to the F-distribution value for 1 and 22 degrees of

freedom at the 5 percent level, there is evidence to reject that

0= . Additionally, the estimate of the negative slope ( = -22.9)

and the confidence interval around a, did not include zero, therefore

the sample data was concluded to be suitable for further analysis.

The nonlinear model Y = at-b was fit and the results are shown

below.

I|

Ii
Ii
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= 115.139 t-'5837

Sum of Mean
Source d.f. Squares Square

Regression 2 154831.0 1
Residuals 22 13549.849

(Lack of Fit) 2 2054.849 1027.425

(Pure Error) 20 11495.0 574.75 .1

Lack of Fit ratio = 102.7.425 1.788
574.75 1

Team Training

An air traffic control task was used in which each of two team-

mat-es por-vjyed a "pattern feeder" whose responsibility it was to guide

aircraft iato an approach gate by issuing verbal instructions via a

sim•ulated radio linked to the aircraft pilots. Two variables were

,,anipu•ated in Experiment VIII: work load (for time stress) and team

arrangement. Stress is defined in terms of the required approach rate

(system criterion): one approach every 2 minutes for low stress, and

one every minute for high stress. Team arrangement was defined in

terms of the manner in which the two teammates coordinated, in order to

satisfy the system criterion. The two team arrangements used were termed

reciprocal and nonreciprocal. In the nonreciprocal arrangement the

team was instructed to satisfy the low-stress criterion on each approach,

indepa'-,dently of any time error incurred on previous approaches. In
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The reciprocal arrangement, on the other hand, each radar controller

(RC) was instructed to compensate for any time error which may have

accrued over the previous approaches. A summarized description is

presented below.

1. Performance Measure - Flight Errors by all groups of
Experiment VIII

2. Characteristics

(a) 4 groups
(b) Two groups used reciprocal arrangement under both

high and low stress conditions
(c) Two groups used nonreciprocal arrangement under both

high and low stress conditions
(d) Four sessions (trials) for each group

A plot of data from Experiment VIII of the test report shows the

performance measure, mean number of flight errors vs sessions (consecu-

tive trials). The graph shows patterns which appear to indicate learning

(see FigureA-22). The linear model was fit in step 2 of the iterative

analysis process with the folloiwng results.

Sum of Mean
Source d.f. Squares Square

Regression 1 784.37812 784.37812

Residuals 14 689.48125 49.24866

F-ratio 784.37812 = 15.9268949.24866

*. .. .. . .- '
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When compared to the F-distribution value for 1 and 14 degrees of

freedom at the 5 percent level, there is evidence to reject the hypo-A

thesis thiat 0,=0. Additionally, the estimate of the slope was

negative (a, = -.6.2625) and the confidence interval around adid not

for further analysis.

inlue er, hreor te aml dtawa cncuedtobesutal
The nonlinear model Y atb was fit and the results are shown

below.

Y 25.3582 t-1.0 39 1

Sum of Me~an
Source d.f. Squares Square

Regression 2 3954.11 '
Residuals 14 589.140

(lack of fit) 2 1.6875 0.72625

(Pure Error) 12 587.6875 48.974

TOTAL 16 4243.25

Lack of Fit ratio =0.72625 =01483

48. 974
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CHAPTER V *

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This research has addressed the problem of determining the existence

of a representative group/crew learning curve (or set of curves) and the

development of a mathematical description of this curve applicable to

training levels in operational testing. Data from OTEA test reports and

data made available through other training and training analysis agencies

was analyzed using an iterative procedure to determine if learning patterns

could be detected.

A screening process was used to determine the suitability of data for

further analysis, after which learning models suggested in the literature

were fit to the screened data using nonlinear regression techniques. AI
comparison of the fitted models was conducted by comparing the Lack of

Fit ratios and the sum of squares for regression computed for each model.

This comparison shows that the following models appear to provide

an adequate fit to the data analyzed.

(1) y atb The power function

(2) Y = aE8 +U'O)tb)I De Jong's model

(3) Y =atb + c

(4) i = ae bt

Since the variations of the power function, models (2) and (3) did not

appear to provide a better fit to the data, model (1) was selected from

the standpoint of parsimony or least parameters. In addition, it cannot
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be stated conclusively that model (1) provides a better fit than model

(4). However, based on a survey of the industrial applications of the

power function model as reported in the literature, it was concluded that

-bthe model V=at- does adequately tit Vie empirical data analyzed and

can be used as a representative group/crew learning model for this data.

Limitations of tha Research '

This research has been limited by the availability of adequate

data representing several different crew and group learning situations.

The lack of a larger data base limited the aiialysis to a small number of1

performance measures. These included tracking, tank gunnery and mortar

¶ examination scores. Since the analysis of a large number of data sets

involvin~g a variety of crew tasks arid performance measures was not

possible, this study concentrated on the analysis of suggested learning

models for the limited data available.

Considerations for Test Design

Even though there is a limited amount of data available in the

group/team context as discussed previously, future data may be analyzed

using the iterative procedures developed in Chapter III. However, a

rEView of the literature indicates that the following considerations

should be made when providing input for the design of operational tests.

1. Insure that individual skill competencies are acquired prior

to engaging in team training or testing. A consistent finding *
was that individual proficiency has been shown to be a sig-

nificant factor in determiining team performance (24). T
2. Address the problem involved in the pro~duction of standardized
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replicable test conditions, and the establishment of .

accepted group/team performance criteria by defining the

tasks characteristics needed to identify realistic training

objectives (24). These particular aspects are not clearly

defined in current literature but objectives are outlined in

these references (24,47,48,49, 50).

3. Distinguish between organizational type tasks and mission

type tasks.

4. The detection, measurement, and recording of the value of an

observable event at each occurrence (24). Current tests

a vehicle for recording these consecutive occurrences in

addition to recording the cell totals.

E.Assessment of learning effects. Procedures developed by

Vealy (51) could be used to determine rate of learning at a

specific trial during an uperational test. These procedures

could be employed in two ways: (a) Conduct initial stages

of test in a sequential fashion, say, for the first three trials A

to determine rate of learning if any. If the rate of learning

leveled off, then the participants are assumed to be at or

approaching a fully learned state and the test could continue

with learning effects considered negligible. On the other

hand, if the rate of learning has not leveled off, then the

test should be continued in a sequential fashion uintil learning

effects become negligible. However, this approach appears to

be too costly in terms of manpower and resources. An
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alternative approach would be,(b) conduct a pretest and

determine rate of learning at each trial. When a satisfactory

level of learning Is reached then the operational test could

begin.

6. Avoid where possible the inclusion of order effects in the

test design in which the participants, fo, example,learn

where to look (learning the problem) rather than learning

how to operate the equipment being evaluated.

Recommendat ions

The following recommendations for future research are made as a

res-ilt of this study. One recommendation is the acquisition and analysis

of more data usir;ý procedures outlined in Chapter III. Since this study

wa,. limited by the nonavailability of a large number of adequate data

sets, further analysis of other samnple data could be used to verify

results obtained in the study. This would include the study of the

acequacy of the power function, = at-b vs the exponential model

= aebt since both models appeared to fit sample data .analyzed in this

study. Howcvar, it coulJ not be deterlinod that th3 two mndals were

statistically different.

Another recommendation involves the development of group/crew

learning curves (or set of curves) for specific crews or units, i.e.,

Artillery battery, rifle squad, etc. Models should be developed on the

basic research level to consider the interaction among crew members and

a possible comparison of the performance by individuals and by the crew.

This should be done because it appears that there is no single overall

____ ___ ____ ___ __ ~I-4
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true model for all group learning. It is felt that since military teams

or units are structured differently and have inherent mission capabilities,

then the concept of an overall true model would not adequately reflect

these di fferences.
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APPENDIX A

This appendix contains representative
plots used in the analysis of sample
data in Chapter IV.
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APPENDIX B

This appendix contains a FORTRAN IV listing
of the program used to provide parameter
estimates used in SPSS subprogram Nonlinear.
To execute program, the user must provide
the number of observations, starting values
for parameters, actual observations, and
trial numbers for each observation.
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PROGRAM P~ARA MS (INPUiT, OU PUT, TAPEý, =NPUT9T APE 6mOU1PUT)
OIMEN43ION BS (7130),TIMFE(700)
REAO#,N,A R(OaS ( ) ,I:1,N), IT ME(C ) rii,NI

c
C THIS PROGRAM SOLVES FOR PARAMETERS "A",o 448" 1Y
C IIINIMIZING THE SLIM OF S(UAREO ERRORS USING A
C GRADIENT TfPE SEARCH PPOCEDURE.

00~ 11 K=19100

00 12 =I:,N

F21=2:F12*F1'

F22:F2-2*F2*F2

:2=2+(O3SI) -(A/ (TIME (I) **,))) *F2
12 CONTINUF

C
C SOLVE FOR ELEMENTS OFnPIECTrON VEC)VOR THAT WILL
C IMPROVE OUR ESTIMATFS OF' PARAMETERS "A"a AND "'9".
C FINO '601" AND "02" rnY S(flLvING A 2Xý MATRIX.
C

F111=1.0
F121z.Fi2/F11

F21i1*0
F221=F22/F21

Q21cQ2/F21
C
c CONDUCT MATRIX ADDITION TO OBTAIN ZERO COEFFICIENT
C FOR 01 IN SECOND EQllATO&N.
C

F112=11711
F122=F12l
1122=11i
F212=F211-Fill
F?22=F221-F4 21

C 22 GET COFFFICIE'NTS OF 02 IN 90TH FOUATIONS AT *
C SAEVLI

F 11 3zF112 *(F 222 /F 122)
F123=Fl2?*(F222/F12c")
!ý13=t112*(F222/F122)
F213=F 212

F223:QF222.

* . __ _ __ __ __ _ __ ..
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C

C l~FO02IN IS1EUTO

F124=:FZ3-F223

F214=F213
F224TF223

C PUT IN STANDARD FORM WHERE COEFFICIENT OF 01. IN
C EQUATION I E').iJALS I. AND COEFFTCIENT OF 32 IN
C EQUATION 2 EJUALS 2 ANn FIND THE VALUES FOR 01
C AND 02 PESPECTIVFLV

C Fll5=F14*~(Fl22/F2??)

F12=FI2,.

F215=F21-
F22F=1 *0

49=0, o0-± i .o
IF (F1115 *GT, H) GO TO 13

:3IF (F225 ,GTo H) GO) TO 14
F225=F225*H
Q 25z ',jZ5 H

C
C FIND MA:XIMO"1 DISTANCE, VMIN, TO PI9OCeEO IN NEW
C UIRECTION FROM C.I'RRFNT PARAMFTER VECTOR TO GAIN
C AN IMFPROVEMENT IN '4INIMIZING SLIM OF Stl(UAREO F'RROPS
C

21 AI=A

A2=A4(W#. -)*Oi

3 2=3 +(W*. 5) *92
A3zA+W~oi
83=3:+W*O2 1
qAlzQA2=jA3=0. 0
DO 15 I=I*N

-IA2 lIA2+CO9S flb- (A2/ (TIME (I) 'B2) ))**2

15 CONTINUE
VAL1=QAl4QA3
VAL2=2%O0*A2

j *ý



F9

IF (VALI ELGs vAL2) GO 10 13

1.8 AV:A+VtlIN*02.
3V=a+VMIN*D2

19 CONTINUE

IF (VAL *LT. .00001) r0 To 2n

WRITE (b947)QV

GO TO 21.
20 Ohi=0!

0222022
IF(nlh .GT. 0.0) GO TO 31.

31. IF 011 .G1, .000001) GO TO 32
IF (0212 .51. 0.0) GO TO 33

33 IF (022 .LTa e~riflOl) GO TO 16~*

9=8+V~4TN*02
11 CONTINUE

WRITE (6,2.?) A*89SE

CF11.895","STOD0EV= "',Fll.8)
STOP
END
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APPENDIX C

This appendix contains an execution
run for the Lightweight Company
Mortar System sample data using the
SPSS Nonlinear subprogram.
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APPENDIX D

A

This appendix contains plots
of the final fitted models
selected in Chapter IV.
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